Dual-mixed Finite Element Methods for the Navier-stokes Equations

نویسندگان

  • Jason S. Howell
  • Noel J. Walkington
چکیده

A mixed finite element method for the Navier–Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier–Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf–sup conditions are developed. Mathematics Subject Classification. 65N60, 65N12, 65M60, 65M12. Received June 23, 2011. Revised July 11, 2012. Published online March 29, 2013.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stopping Criteria for Mixed Finite Element Problems

Abstract. We study stopping criteria that are suitable in the solution by Krylov space based methods of linear and non linear systems of equations arising from the mixed and the mixed-hybrid finite-element approximation of saddle point problems. Our approach is based on the equivalence between the Babuška and Brezzi conditions of stability which allows us to apply some of the results obtained i...

متن کامل

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

A Dual Mixed Formulation for Non-isothermal Oldroyd–Stokes Problem

We propose a mixed formulation for non-isothermal Oldroyd–Stokes problem where the both extra stress and the heat flux’s vector are considered. Based on such a formulation, a dual mixed finite element is constructed and analyzed. This finite element method enables us to obtain precise approximations of the dual variable which are, for the non-isothermal fluid flow problems, the viscous and poly...

متن کامل

The Postprocessed Mixed Finite-Element Method for the Navier-Stokes Equations

A postprocessing technique for mixed finite-element methods for the incompressible Navier–Stokes equations is studied. The technique was earlier developed for spectral and standard finite-element methods for dissipative partial differential equations. The postprocessing amounts to solving a Stokes problem on a finer grid (or higher-order space) once the time integration on the coarser mesh is c...

متن کامل

A Priori and A Posteriori Error Estimations for the Dual Mixed Finite Element Method of the Navier-Stokes Problem

This article is concerned with a dual mixed formulation of the Navier-Stokes system in a polygonal domain of the plane with Dirichlet boundary conditions and its numerical approximation. The gradient tensor, a quantity of practical interest, is introduced as a new unknown. The problem is then approximated by a mixed finite element method. Quasi-optimal a priori error estimates are obtained. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013